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The vibration of a simply supported rectangular plate which is reinforced by
a finite number of springs at arbitrary locations is sought as a linear combination
of the flexural modes of the corresponding unloaded (or simple) plate. Although
these modes cannot be directly used to decouple the dynamic equations of the
motion of the reinforced plate, it is still advantageous to use them as a complete
set of basis functions to represent the interested quantities such as the deflection
of the plate. A linear transformation is established between the two modal spaces
spanned by the modes, respectively, for the reinforced and the unloaded plates.
The radiation characteristics of the spring-reinforced plate are investigated by
using a near field formulation. In order to reduce computational burden, a
frequency interpolation technique is employed so that numerical integration now
needs to be carried out only at some key frequencies. The specific radiation
resistances of the basis modes are first determined as a set of invariants from which
the modal radiation efficiency of the reinforced plate can be readily extracted. The
effects of cross-modal coupling between the basis modes have been considered,
which is necessary for an accurate determination of the modal radiation efficiency
for the reinforced plate. A qualitative procedure is also described for locating the
‘‘coincidence’’ frequencies where the modal radiation efficiencies of the reinforced
plate tend to reach their peak values.
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1. INTRODUCTION

Many structures of practical concerns may be adequately approximated by a
rectangular plate. Their vibro–acoustic characteristics may well be understood or
inferred from studying the much simpler plate problems. As a result, the vibration
of and acoustic radiation from plates with various complications have long been
an important subject in structural dynamics and acoustics. The problem of a
rectangular plate having a rigid mass of finite width running across its center was
studied by Cohen and Handelman [1]. The Rayleigh–Ritz method was used by
assuming a simple polynomial form of mode shape. The vibrations of plates
carrying a concentrated mass was investigated in references [2, 3] where the flexural
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displacement was expanded as a double series of mode shapes for the unloaded
plate. The characteristic equation for the natural frequencies of the plate–mass
system was derived by enforcing the compatibility conditions at the mass
location(s). A general variational formulation was given by Stokey and Zorowski
[4] for the determination of the natural frequencies of a plate carrying a finite
number of masses. However, it was shown that the accuracy of natural frequencies
so estimated was quite sensitive to the locations of the masses. Recently, the
vibration of plates loaded with any number of masses or springs was solved in
references [5, 6] by using a so-called Analytical-and-Numerical-Combined Method
(ANCM). Unlike many analytical methods being practical only for plates with a
single concentrated element (spring or mass), ANCM allows a simple and unified
solution for plates carrying any number of elements. A systematic discussion about
plate vibrations can be found in reference [7].

The radiation of sounds from rectangular plates was investigated by many
authors. Wallace [8] presented an asymptotic solution for the radiation efficiencies
of different plate modes at low frequencies. It was shown that the total power
radiated from the whole plate is actually bounded by that from a single intranodal
area when the acoustic wavelength greatly exceeds the structural wavelengths in
both directions. The sound radiation under general boundary conditions was
considered by Gomperts [9] and Berry et al. [10]. In the literature, the radiation
characteristics were mostly studied based on the farfield sounds, which often admit
a closed-form of solutions for large or small acoustic wavenumber. In a medium
frequency range, the radiated power can be expressed as a double integral that is
generally calculated numerically. The plate radiation problems were also
investigated in references [11, 12] by using a near field formulation in which the
modal radiation efficiency is originally represented by a quadruple integral. A
co-ordinate transformation technique was utilized to convert the quadruple
integral into a sum of single integrals. In most investigations, the radiated sound
power is simply determined from the modal radiation efficiencies, without
considering the cross-modal contributions. Keltie and Peng [13] studied the effects
of cross-modal coupling on the sound radiation from plates of infinite long and
finite width. It was shown that the contributions due to cross-modal coupling may
be important at low frequency or if the plate is under an off-resonant excitation.
Snyder and Tanaka demonstrated that the coupling terms could be simply
obtained from the modal radiation efficiencies [14]. Their formulae, however, are
valid only for small wavenumbers. Li and Gibeling [15] studied, in a general
manner, the characteristics of the cross-modal coupling and its impacts on the
power radiation. It was shown that the mutual terms (radiation resistances)
resulting from the cross-modal coupling can be determined easily and accurately
in the whole frequency range.

In this paper, the vibration of a simply supported rectangular plate which is
reinforced by a finite number of springs at arbitrary locations is sought as a linear
combination of the flexural modes of the corresponding unloaded (or simple)
plate. Although these modes cannot be directly used to decouple the dynamic
equations of the motion of the reinforced plate, it is still advantageous to use them
as a complete set of basis functions to represent the interested quantities such as
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the deflection of the plate. A linear transformation is established between the two
modal spaces spanned by the modes, respectively, for the reinforced and the
unloaded plates. The radiation characteristics of the spring-reinforced plate are
investigated by using a near field formulation. In order to reduce computational
burden, a frequency interpolation technique is employed so that numerical
integration now needs to be carried out only at some key frequencies. The specific
radiation resistances of the basis modes are first determined as a set of invariants
from which the modal radiation efficiency of the reinforced plate can be readily
extracted. The effects of cross-modal coupling between the basis modes have been
considered, which is necessary for an accurate determination of the modal
radiation efficiency for the reinforced plate. A qualitative procedure is also
described for locating the ‘‘coincidence’’ frequencies where the modal radiation
efficiencies of the reinforced plate tend to reach their peak values.

2. VIBRATION OF A SPRINGS-REINFORCED PLATE

Consider a thin rectangular plate of length a and width b reinforced through
Nk springs at arbitrary points, as shown in Figure 1. The differential equation for
the flexural displacement, w, of the plate is given by

6D94 + icv− rhv2 + s
Nk

i=1

kid(x− xi , y− yi )7w=P(x, y), (1)

where D=Eh3/12(1− n2) is the bending stiffness of the plate, v is the angular
frequency, E is the Young’s modulus, n is the Poisson’s ratio, c is the damping
coefficient of the plate material, r is the plate mass per unit area, h is plate
thickness, P(x, y) is the pressure, d is the Dirac delta function, and ki is the spring
constant at location (xi , yi ).

Various techniques have been exploited to solve equation (1). Here, however,
the one used in references [5, 6] will be presented because of its simplicity and
generality.

Figure 1. Schematic of a rectangular plate reinforced by finite springs.
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In the absence of the springs, the solution of equation (1) is typically expressed
as a double series of the flexural modes:

w= s
a

m=1

s
a

n=1

Amncmn (x, y), (2)

or

w=CTA, (3)

where Amn is the expansion coefficient, and cmn is the (m, n) bending mode of the
plate. For a simply-supported plate, it is well known that

cmn (x, y)= (2/zab) sin (mp/a)x sin (np/a)y. (4)

Substituting equation (4) into equation (1) and making use of the orthogonality
of the modes, one has

Amn =
�cmn , P�

[rh(v2
mn −v2)+ ivc]

, (5)

where �u, v�= fb
0 fa

0 u(x, y)v(x, y) dx dy and vmn =zD/rh [(mp/a)2 + (np/b)2] is
the natural frequency of the (m, n) mode.

Equation (5) indicates that in the modal space the expansion coefficients can be
independently determined with no need for solving a set of linear algebraic
equations. However, when springs are attached to the plate, the modes (or basis
modes when a distinction needs to be made from the current modes for the
reinforced plate) given by equation (4) will all be modified, except for those whose
nodal lines contain all the attachment points. Hence, they are normally not the
modes of the reinforced plate. However, equation (2) is still usable in view of the
completeness of the characteristic functions (or modes), and the unknown
expansion coefficients will now have to be determined from

(V+ ivcI− rhv2I+K)A=P, (7)

where

Vmn,m'n' = rhv2
mndmm'dnn', (8)

Kmn,m'n' = s
i

kicmn (xi , yi )cm'n'(xi , yi ), Pmn = �cmn , P�, (9, 10)

I is the identity matrix and dmn is the Kronecker delta.
It is clear from equation (7) that one now needs to solve a set of linear equations

to determine the expansion coefficients, hence the vibration of the plate. Because
of the explicit inclusion of frequency in the coefficient matrix, the expansion
coefficients are obviously frequency dependent and have to be solved at each
frequency step, which is obviously not efficient when a solution is desired at a large
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number of frequencies. In order to avoid this difficulty, consider a linear space F�
of MN dimension spanned by the vectors fi satisfying

(V+K)fi − lifi =0, i=1, 2, · · · , MN; and fT
i fj = dij . (11, 12)

Such a space is complete, a useful property of eigenvectors. Thus, the coefficient
vector A can be expressed as

A=Fa, (13)

where

F=[f1, f2, · · · , fmn , · · · , fMN ]. (14)

Substituting equation (13) into equation (7) and left-multiplying it with FT leads to

a=[L+ivcI− rhv2I]−1FTP, (15)

where

L=diag[l1, l2, · · · , lMN ]. (16)

Inserting equations (13) and (15) into equation (3), the vibration of the plate can
be finally obtained as

w= s
j

CTfjf
T
j �C, P�

lj +ivc− rhv2. (17)

In the above discussion, the truncated form of equation (2) has been assumed with
m=1, 2, · · · , M and n=1, 2, · · · , N(MN=M×N).

It is easy to verify that the vector CTfi is simply the ith mode of the
spring-reinforced plate whose natural frequency is given by vi =zli /rh. Define
C� as the linear space spanned by cmn’s, m=1, 2, · · · , M and n=1, 2, · · · , N.
Then the (m,n)th component of the vector fi simply specifies the co-ordinate of
the mode CTfi in the cmn-axis. In other words, the matrix F defines a linear
mapping or relationship between the basis modes and the current modes for the
reinforced plate.

3. SOUND RADIATION FROM THE PLATE

The sound field generated by an infinitely-baffled rectangular plate can be
obtained from the well-known Raleigh integral:

p(x, y, z)=
ivr0

2p g
b

0 g
a

0

ẇ e−ikz(x− x')2 + (y− y')2 + z2

z(x− x')2 + (y− y')2 + z2
dx' dy', (18)

where r0 is the density of air and k is the acoustic wavenumber.
The total sound power is calculated by integrating the sound intensity over the

whole plate area:

W= �1
2R[ẇ*, p=z=0]�, (19)
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where * and R denote the complex conjugate and the real part of a complex
number, respectively. Substitution of equations (2), (13) and (18) into equation
(19) yields

W= 1
2r0c0v

2(aHFTR[Z]Fa), (20)

where c0 is the wave speed in air, the superscript H denotes the Hermitian
operation and Zmn,n'm' = zmn,n'm' + ixmn,n'm' is the specific radiation impedance
(ratio), defined as

zmn,n'm' =
k
2p g

b

0 g
a

0 g
b

0 g
a

0

cmn (x, y)cm'n'(x', y')

×
sin kz(x− x')2 + (y− y')2

z(x− x')2 + (y− y')2
dx' dy' dx dy, (21)

xmn,m'n' =
k
2p g

b

0 g
a

0 g
b

0 g
a

0

cmn (x, y)cm'n'(x', y')

×
cos kz(x− x')2 + (y− y')2

z(x− x')2 + (y− y')2
dx' dy' dx dy. (22)

Accordingly, the radiation efficiency for the ith mode of the spring-reinforced plate
can be calculated from

si =fT
i
R[Z]fi . (23)

The radiated sound power is usually determined by including only the
self-radiation resistances, the diagonal elements (m=m' and n= n') in R[Z],
which may be adequate when a plate vibrates under a resonant condition and the
dominant modes are well separated. As a result, one can avoid the calculation of
the mutual radiation resistances represented by the off-diagonal elements. It is
obvious, however, from equation (23) that the mutual radiation resistances will
need to be taken into account in determining the modal radiation efficiency for
the reinforced plate because the contributions of the self and mutual terms are now
completely tangled up through the eigenvector fi . The arbitrariness of a
reinforcing plan, hence of the eigenvector fi , prohibits one from making any
general assumption that the effects of the mutual terms can be safely ignored.

The determination of the radiation resistance matrix R[Z] involves calculating
the quadruple integral given in equation (21), which is a computing intensive task,
especially at high frequencies because of the rapid oscillation of the integrands.
In order to alleviate this problem, the quadruple integral is typically converted into
several double integrals via a co-ordinate transformation [11, 12]. The self
radiation resistances can then be expressed as

zmn,mn =(1/ambn )Jmn
1 + Jmn

2 + (1/am )Jmn
3 + (1/bn )Jmn

4 , (24)
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where

Jmn
1 1 sin amk sin bnt

Jmn
2 (a− k)(b− t) cos amk cos bntg

G

G

F

f

h
G

G

J

j

g
G

G

F

f

h
G

G

J

j

g
G

G

F

f

h
G

G

J

j
Jmn

3 (b− t) sin amk cos bnt

Jmn
4 (a− k) cos amk sin bnt

=
2k
pab g

b

0 g
a

0

×
sin kzk2 + t2

zk2 + t2
dk dt. (25)

Similarly, the mutual radiation resistance can be written as [15]:
for m'&m and n'& n,

zmn,m'n' =
e(m'−m)e(n'− n)
(a2

m − a2
m')(b2

n − b2
n')

{ambnJm'n'
1 − ambn'Jm'n

1 − am'bnJmn'
1 + am'bn'Jmn

1 }; (26)

for m'&m and n'= n,

zmn,m'n =[e(m'−m)/(a2
m − a2

m')]{amJm'n
3 − am'Jmn

3 + (am /bn )Jm'n
1 − (am'/bn )Jmn

1 }; (27)

for m'=m and n'& n,

zmn,mn' = [e(n'− n)/(b2
n − b2

n')]{bnJmn'
4 − bn'Jmn

4 + (bn /am )Jmn'
1 − (bn'/am )Jmn

1 }, (28)

where

e(m'−m)=60,
2,

for
for

m'−m=21,
m'−m=22,

23,
24,

25,
26,

· · · ,
· · · .7 (29)

The matrix R[Z] is symmetric, which is clear from its original definition, equation
(21). In addition, equations (26–28) indicate that it is sparsely populated: about
three quarters of its MN×MN elements are constantly zero. Therefore, there is
a total of about MN*(MN−1)/8 off-diagonal elements (or mutual radiation
resistances) to be determined, which may still be a devastating problem when a
large number of modes are involved. Fortunately, it turns out that all the mutual
radiation resistances can be determined at virtually no cost. This is evident from
the fact that, since m and m' (also n and n') only take the numbers from the same
collection (of integers), all the integrals appearing in equations (26–28) have
already been encountered and calculated once in the process of determining the
self-radiation resistances.

The double integrals given in equation (25) can be further reduced to several
single integrals by performing the integration in a polar co-ordinate system. Such
an approach, however, will not be adopted here due to the lengthy expressions



τq

a

κp

τ

κ

δκ = α /Nd1

δτ = b /Nd2  b

rpq

. .   . . 124

Figure 2. Discretization of the plate.

involved. Instead, a different technique to facilitate the calculations will be
employed.

The explicit inclusion of the acoustic wavenumber in the integrands implies that
the self and mutual radiation resistances are frequency dependent, and the
computing intensive numerical integrations need to be carried out at each
frequency. The rapid oscillation of the integrands in the integration domain tends
to cause a convergence problem for a large acoustic wavenumber. However, when
viewing from a different angle in the wavenumber space, the integrands will show
a much simpler (sinusoidal) pattern. This suggests that the frequency interpolation
technique discussed in reference [16] may be applicable here. Essentially, it is based
on the premise that a function varies so slowly in a frequency range that its values
at any (slave) frequency k can be adequately obtained from those at the two end
(master) frequencies, k1 and k2 that is,

z(k)= (1− s)z(k1)+ sz(k2), 0E s=(k− k1)/(k2 − k1)E 1. (30)

In equation (30), the function z may represent any of the integrals defined in
equation (25). In this way, the intensive numerical integrations can now be avoided
at slave frequencies.

Examining the frequency dependent terms in equation (25) reveals that all the
integrands vary sinusoidally with frequency at any given point (k, t), becoming
most violent when zk2 + t2 reaches its maximum value Rm =za2 + b2.
Therefore, how well does the frequency interpolation scheme work for the function
sin (kRm ) will ultimately determine the accuracy of the radiation resistance
calculated at the slave frequencies. Apparently, the characteristic size, Rm , of a
plate measures the oscillatory frequency of the function sin (kRm ) in the
wavenumber space. For example, it varies slower for a smaller plate. Bearing this
in mind, the whole area of a plate will be divided into Nd1 ×Nd2 small rectangular
ones, as shown in Figure 2.



   125

Accordingly, an integral over [(0, a)&(0, b)] can be expressed as a sum of
the integrals over these smaller areas, Spq =(kp − dk/2,kp + dk/2)&(tq − dt/
2,tq + dt/2), that is,

g
b

0 g
a

0

( · )= s
Nd1,Nd2

p,q g
tq + dt/2

tq − dt/2 g
kp + dk/2

kp − dk/2

( · )= s
p,q gSpq

( · ). (31)

Although such a discretization procedure may not add any value to the numerical
integrations, it will play a key role in making the interpolation scheme successful.
Consider the function

sin kzk2 + t2 = Im{eikzk2 + t2}. (32)

Apply a neutralization factor eikrpq to it:

Im{eikzk2 + t2}=Im{eik(zk2 + t2 − rpq) eikrpq}. (33)

In light of equations (31) and (33), equation (24), for example, can be rewritten as

zmn,mn = s
p,q

Im6eikrpq gSpq
$ 1
ambn

Imn
1 + (a− k)(b− t)Imn

2 +
(b− t)

am
Imn

3

+
(a− k)

bn
Imn

4 % dk dt7= s
p,q

Im{eikrpqGpq (k)}, (34)

where Imn
i is obtained from Jmn

i by simply replacing the term sin kzk2 + t2 with
eik(zk2 + t2 − rpq ). Now, our problem has been reformulated as: (1) to faithfully calculate
Gpq (k) at the master frequencies and (2) to approximate it, at all other frequencies,
by using the interpolation technique.

Obviously, the spacing between two master frequencies cannot be arbitrarily
large. A criterion on the maximum spacing can be established by considering

Gpq (k)=gSpq

eik(zk2 + t2 − rpq )F(k, t) dk dt

=gSpq

{1+ ik(zk2 + t2 − rpq )+
1
2!

[ik(zk2 + t2 − rpq )]2

+
1
3!

[ik(zk2 + t2 − rpq )]3 + · · ·}F(k, t) dk dt

=gSpq

{[1−
k2

2!
(zk2 + t2 − rpq )2 + · · · ]+ ik(zk2 + t2 − rpq )
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× [1−
k2

3!
(zk2 + t2 − rpq )2 + · · · ]}F(k, t) dk dt

=gSpq

{1+ ik(zk2 + t2 − rpq )+O[k2(zk2 + t2 − rpq )2]}F(k, t) dk dt.

(35)

Now, it becomes clear that equation (30) is equivalent to accounting for only the
first two terms in equation (35). However, its accuracy can be ensured if the
following conditions is met:

k(zk2 + t2 − rpq )2�1, (36)

[(k, t)$[(kp − dk/2, kp + dk/2)&(tq − dt/2, tq + dt/2)].

Referring to Figure 2, one will have

k(zk2 + t2 − rpq )E 1
2kzdk2 + dt2 = 1

2kz(a/Nd1)2 + (b/Nd2)2, (37)

[(k, t)$[(kp − dk/2, kp + dk/2)&(tq − dt/2, tq + dt/2)].

The number of divisions can be independently selected along each of the plate
lengths. However, a better division plan should be such that the final small areas
are square-like, i.e., a/Nd1 3 b/Nd2. Under this situation, the condition for the
maximum frequency spacing, equation (36), can be explicitly expressed as:

kmaxz2 Nd1e/a, or fmax = (c0e/z2 pa)Nd1, (38, 39)

where e is introduced as a small number that sets up the error tolerance.
Equation (39) indicates that the above discretization and neutralization

procedure will allow the spacing between two master frequencies to increase by
up to a factor of 2Nd1. It needs to be noted that such a discretization process should
not compromise the accuracy of numerical integrations, nor will it consume more
computing time.

It is clear from equation (35) that for k(zk2 + t2 − rpq )E eQ 1 both the real
and imaginary parts of Gpq (k) are a descending series with different signs for any
two adjacent terms. Therefore, e2 will bound the truncation error resulting from
dropping all of the higher order terms in the frequency interpolation
approximation. For example, for e=0·1, the interpolation error for Gpq (k) will not
exceed 1% at any slave frequency. Correspondingly, the resultant radiation
resistances are expected to have the same accuracy, if not higher.

4. RESULTS AND DISCUSSIONS

As an example problem, consider a steel plate: a=0·71 m, b=0·74 m and
h=0·005 m. Four identical springs (k1 = k2 = k3 = k4 =2·4×106 N/m) are
attached to the plate at arbitrarily selected locations: (0·3a, 0·3b), (0·3a, 0·6b),
(0·6a, 0·3b) and (0·6a, 0·6b).
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T 1

List of the first four natural frequencies

Natural frequencies (Hz)
ZXXXXXXCXXXXXXV

Mode no. Eqn. (40) Present

1 17·1 17·1
2 29·7 29·7
3 40·8 40·8
4 57·2 57·1

4.1.  

Before proceeding to present any result of this 4-spring problem, first consider
a simplified version: only the first spring is attached. This will give an opportunity
to check the present formulation in terms of the estimated natural frequencies.

Figure 3. The first four modes of the spring-reinforced plate: (a) mode 1: f1 =46·6 Hz; (b) mode
2: f2 =51·0 Hz; (c) mode 3: f3 =60·8 Hz; (d) mode 4: f4 =71·6 Hz.
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Figure 4. Composition of the first mode: Key: —w—, m=1; . . .q . . . , m=2; —-r-—, m=3.

For this purpose, the characteristic equation given by Das and Navaratna [4] is
used here:

−rh
k1

= s
M,N

m,n

c2
mn (x1, y1)

(v2
mn −v2)

. (40)

The results obtained from these two different formulations show an excellent
agreement as illustrated in Table 1 where the four lowest natural frequencies are
listed. A total of 49 modes (N=M=7) is used in both calculations.

Now, return to the original 4-spring case. As stated earlier, the ith mode of the
reinforced plate is defined by the function cTfi . Since the springs can be viewed
as an add-on feature to a simple plate, their effects are basically manifested, from
a modal analysis point of view, in altering the original natural frequencies and
mode shapes. To see such modifications, the first four modes are plotted in

T 2

The self radiation resistance for the (1,1) mode calculated by numerical integration
and the interpolation approximation

Wavenumber Direct Interpolation Error (%)

Dk= kmax

k1 +Dk/4 0·483007 0·482932 0·02
k1 +2Dk/4 0·605405 0·605279 0·02
k1 +3Dk/4 0·727594 0·727479 0·02

Dk=3kmax

k1 +Dk/4 0·726594 0·726598 0·00
k1 +2Dk/4 1·05061 1·04864 0·19
k1 +3Dk/4 1·25043 1·24863 0·14

Dk=5kmax

k1 +Dk/4 0·953793 0·950223 0·37
k1 +2Dk/4 1·28503 1·27835 0·52
k1 +3Dk/4 1·27400 1·26879 0·41
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Figure 5. Modal radiation efficiencies for five lowest (a) odd and (b) even modes of the reinforced
plate.

Figure 3. Just by looking at these modes, one may be able to identify the traces
of some basis modes.

A more vigorous ‘‘signature’’ analysis, however, should rely on the information
carried by the vector fi because it completely specifies the position of the ith mode
cTfi in the original modal space C� . Because >fi>2 0 1, the square of the (m,n)th
component of fi can be conveniently used to measure cmn’s presentation in the
mode cTfi . For example, the first mode is replotted in Figure 4 in terms of the
contributions of its 12 most dominant basis modes. It can be seen that only a few
basis modes actually have a significant influence on it. This is also true for the other
modes.

4.2.   

In order to verify the accuracy of the frequency interpolation approximation
discussed in the previous section, Table 2 lists the self-radiation resistance for the
(1, 1) mode, calculated at several slave frequencies. The starting master frequency
is f1 =150 Hz (k1a3 2). The ending master frequency is f2 = f1 + xkmax, where x

is an accelerating factor and kmax(32) is the maximum master frequency step
determined from equation (38) with e=0·1 and Nd =10. The slave frequencies are
here simply chosen as k1 + xkmax/4, k1 + xkmax/2 and k1 +3xkmax/4. The results
clearly show that the frequency interpolation technique can be used adequately
even for a fairly large (master) frequency step.

4.3.       

Once the self and mutual radiation resistances are known for the basis modes,
the modal radiation efficiencies for the reinforced plate can be readily determined
from equation (23). The radiation efficiencies for the first 10 modes are plotted
in Figure 5. In spite of their ‘‘irregular’’ (mode) shapes, they have exhibited a
familiar characteristic: reaching to a peak value at some ‘‘coincidence’’ frequency
and then consistently descending to unity. Unlike the other modes, the eighth
mode shows some peculiarity in that there are two humps on its radiation
efficiency curve. The first hump attributes to the (1, 1), (1, 2) and (2, 1) modes
which account for an approximate 74% contribution, and the second one occurs
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Figure 6. Radiation efficiencies of the first mode and its three most contributory basis modes.

near the coincidence frequencies of the (1, 5) and (5, 1) modes representing another
16% contribution. The dip indicates a lack of contributory basis modes which
have coincidence frequencies falling between the two humps.

To understand the occurrence of the humps, the radiation efficiency of the first
mode is plotted in Figure 6 together with those of its three most contributory basis
modes. Its peak radiation efficiency approximately occurs at the coincidence
frequency for the (1, 3) mode. Although the (1, 2) mode has an almost identical
presentation in mode 1 as the (1, 3) mode (refer to Figure 4), the resulting radiation
efficiency curve does not seem to be very responsive to it, even near its coincidence
frequency. Usually, the effectively radiating basis modes are those whose modal
wave numbers are not significantly greater than the acoustic wave number for a
given frequency. This suggests that only the acoustically fast (basis) modes are
likely to be responsible for the hump(s) on a modal radiation efficiency curve.
Typically, the higher order modes display a higher and sharper hump at their
coincidence frequencies. Since a basis mode will remain to be (radiation) effective
after its coincidence frequency, one can infer that the peak radiation efficiency of
the mode of the reinforced plate should not occur at a frequency that may exclude

Figure 7. The radiation efficiencies for nine ‘‘randomly’’ selected modes (i=1, 4, 7, 10, · · · , 25)
are plotted by using two different abscissas: (a) k and (b) k/( fi /f1)1/2.
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Figure 8. Modal radiation efficiencies for (a) the first and (b) the tenth mode: ——, with
cross-modal coupling; - - - -, without cross-modal coupling.

any of the most contributory basis modes from being acoustically fast.
Furthermore, by realizing the radiation efficiency of an acoustically fast mode
consistently decreases with frequency one can anticipate that the maximum
radiation efficiency should occur in the close proximity of the highest of the
coincidence frequencies for the contributory basis modes. For example, for a given
mode of natural frequency fi , its contributory basis modes are usually those which
satisfy vmm E 2pfi . Thus, the frequency 2pfi can be used to define a nominal
maximum modal wave number for the contributory basis modes, hence the
approximate location of the peak radiation efficiency. To verify the point, the
radiation efficiencies for the nine ‘‘randomly’’ selected modes
(i=1, 4, 7, 10, · · · , 25) are plotted in Figure 7 by using two different abscissas: k
and k/( fi /f1)1/2. It can be observed that, as the modal order increases, the humps
basically shift to the right (high frequency) along the k-axis, and they fall together
when the wave number is divided by ( fi /f1)1/2. The pattern for the later case, as
shown in Figure 7(b), is frequently presented in the literature when the modal
radiation efficiencies of a simple plate are plotted as functions of the wave number
ratios (the acoustic wave numbers divided by the modal wave numbers). In this
way, the ‘‘coincidence’’ frequencies become predictable for the modes of the
loaded plate.

4.4.    - 

In order to understand the effects of the cross-modal coupling among the basis
modes, the radiation efficiencies for the first and tenth modes of the loaded plate
are plotted in Figure 8, which are calculated, respectively, with and without
including the mutual radiation resistances. The results clearly indicate that, except
for high frequencies, the effects of the cross-modal coupling is normally
meaningful. Furthermore, it should be noted that the contributions of the mutual
radiation resistances can be either positive or negative, which implies, without
accounting for the cross-modal contributions, that the modal radiation efficiencies
of the loaded plate can be over- or under-estimated at a given frequency.
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The acoustic power radiated from the loaded plate can be determined in the
same way as the modal radiation efficiency. However, it should be mentioned that,
unless for other uses, the modal radiation efficiencies need not to be explicitly
calculated for the determination of sound power. As a matter of fact, it will be
more efficient in the present case to directly calculate the sound power from the
coefficient vector A and the radiation resistance matrix R[Z].

5. SUMMARY

The vibration of a simply supported rectangular plate reinforced by a finite
number of springs at arbitrary points can be conveniently expressed as a linear
combination of the basis modes for the corresponding simple plate. Both the
natural frequencies and mode shapes for the spring-reinforced plate can be
simultaneously obtained by solving a standard eigen-problem. A linear
relationship exists between the two modal groups, which allows to study the
radiation characteristic of a loaded plate in terms of that of a simple plate. Thus,
the most time-consuming calculation (of the radiation resistances matrix) needs
to be carried out only once when a plate is subjected to various reinforcing plans
and/or a multiple of loading conditions.

It has been shown that the frequency interpolation technique works well for
(even) fairly large master frequency steps. Consequently, the intensive numerical
integrations are now limited only to a small number of master frequencies. Like
in a simple plate case, the modal radiation efficiency curve typically display a hump
near the ‘‘coincidence’’ frequency determined by a maximum nominal wave
number for the contributory basis modes, and then asymptotically descends to
unity. The effects of the cross-modal coupling between the basis modes normally
need to be considered in studying the acoustic characteristic of a loaded plate.
Although the current discussions have been focused on the spring-loaded plates,
it should be straightforward to extend them to plates with some other features such
as a combination of masses and springs.
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